作者: 發(fā)布時間:2024-01-21 瀏覽次數(shù) :0
表面缺陷是產(chǎn)品表面局部物理或化學性質(zhì)不均勻的區(qū)域,如金屬表面的劃痕、斑點、孔洞,紙張表面的色差、壓痕,玻璃等非金屬表面的夾雜、破損、污點等等。表面缺陷不僅影響產(chǎn)品的美觀和舒適度,而且一般也會對其使用性能帶來不良影響,所以生產(chǎn)企業(yè)對產(chǎn)品的表面缺陷檢測非常重視,以便及時發(fā)現(xiàn),從而有效控制產(chǎn)品質(zhì)量,還可以根據(jù)檢測結(jié)果分析生產(chǎn)工藝中存在的某些問題,從而杜絕或減少缺陷品的產(chǎn)生,同時防止?jié)撛诘馁Q(mào)易糾份,維護企業(yè)榮譽。
人工檢測是產(chǎn)品表面缺陷的傳統(tǒng)檢測方法,該方法抽檢率低、準確性不高、實時性差、效率低、勞動強度大、受人工經(jīng)驗和主觀因素的影響大,而基于機器視覺的檢測方法可以很大程度上克服上述弊端。
表面缺陷檢測
機器視覺技術是一種無接觸、無損傷的自動檢測技術,是實現(xiàn)設備自動化、智能化和精密控制的有效手段,具有安全可靠、光譜響應范圍寬、可在惡劣環(huán)境下長時間工作和生產(chǎn)效率高等突出優(yōu)點。機器視覺檢測系統(tǒng)通過適當?shù)墓庠春蛨D像傳感器(CCD攝像機)獲取產(chǎn)品的表面圖像,利用相應的圖像處理算法提取圖像的特征信息,然后根據(jù)特征信息進行表面缺陷的定位、識別、分級等判別和統(tǒng)計、存儲、查詢等操作;
機器視覺表面缺陷檢測系統(tǒng)基本組成
主要包括圖像獲取模塊、圖像處理模塊、圖像分析模塊、數(shù)據(jù)管理及人機接口模塊。
圖像獲取模塊由工業(yè)相機、光學鏡頭、光源及其夾持裝置等組成,其功能是完成產(chǎn)品表面圖像的采集。在光源的照明下,通過光學鏡頭將產(chǎn)品表面成像于相機傳感器上,光信號先轉(zhuǎn)換成電信號,進而轉(zhuǎn)換成計算機能處理的數(shù)字信號。目前工業(yè)用相機主要基于CCD或CMOS芯片的相機。CCD是目前機器視覺z為常用的圖像傳感器。
機器視覺光源直接影響到圖像的質(zhì)量,其作用是克服環(huán)境光干擾,保證圖像的穩(wěn)定性,獲得對比度盡可能高的圖像。目前常用的光源有鹵素燈、熒光燈和發(fā)光二級管(LED)。LED光源以體積小、功耗低、響應速度快、發(fā)光單色性好、可靠性高、光均勻穩(wěn)定、易集成等優(yōu)點獲得了廣泛的應用。
由光源構(gòu)成的照明系統(tǒng)按其照射方法可分為明場照明與暗場照明、結(jié)構(gòu)光照明與頻閃光照明。明場與暗場主要描述相機與光源的位置關系,明場照明指相機直接接收光源在目標上的反射光,一般相機與光源異側(cè)分布,這種方式便于安裝;暗場照明指相機間接接收光源在目標上的散射光,一般相機與光源同側(cè)分布,它的優(yōu)點是能獲得高對比度的圖像。結(jié)構(gòu)光照明是將光柵或線光源等投射到被測物上,根據(jù)它們產(chǎn)生的畸變,解調(diào)出被測物的3維信息。頻閃光照明是將高頻率的光脈沖照射到物體上,攝像機拍攝要求與光源同步。
圖像處理模塊主要涉及圖像去噪、圖像增強與復原、缺陷的檢測和目標分割。由于現(xiàn)場環(huán)境、CCD圖像光電轉(zhuǎn)換、傳輸電路及電子元件都會使圖像產(chǎn)生噪聲,這些噪聲降低了圖像的質(zhì)量從而對圖像的處理和分析帶來不良影響,所以要對圖像進行預處理以去噪。圖像增強目是針對給定圖像的應用場合,有目的地強調(diào)圖像的整體或局部特性,將原來不清晰的圖像變得清晰或強調(diào)某些感興趣的特征,擴大圖像中不同物體特征之間的差別,抑制不感興趣的特征,使之改善圖像質(zhì)量、豐富信息量,加強圖像判讀和識別效果的圖像處理方法。圖像復原是通過計算機處理,對質(zhì)量下降的圖像加以重建或復原的處理過程。圖像復原很多時候采用與圖像增強同樣的方法,但圖像增強的結(jié)果還需要下一階段來驗證;而圖像復原試圖利用退化過程的先驗知識,來恢復已被退化圖像的本來面目,如加性噪聲的消除、運動模糊的復原等。圖像分割的目的是把圖像中目標區(qū)域分割出來,以便進行下一步的處理。
圖像分析模塊主要涉及特征提取、特征選擇和圖像識別。
特征提取的作用是從圖像像素中提取可以描述目標特性的表達量,把不同目標間的差異映射到低維的特征空間,從而有利于壓縮數(shù)據(jù)量、提高識別率。表面缺陷檢測通常提取的特征有紋理特征、幾何形狀特征、顏色特征、變換系數(shù)特征等,用這些多信息融合的特征向量來區(qū)可靠地區(qū)分不同類型的缺陷;這些特征之間一般存在冗余信息,即并不能保證特征集是z優(yōu)的,好的特征集應具備簡約性和魯棒性,為此,還需要進一步從特征集中選擇更有利于分類的特征,即特征的選擇。圖像識別主要根據(jù)提取的特征集來訓練分類器,使其對表面缺陷類型進行正確的分類識別。
數(shù)據(jù)管理及人機接口模塊可在顯示器上立即顯示缺陷類型、位置、形狀、大小,對圖像進行存儲、查詢、統(tǒng)計等。
機器視覺表面缺陷檢測主要包括2維檢測和3維檢測,前者是當前的主要表面缺陷檢測方式,也是本文的著重論述之處。