作者: 發(fā)布時間:2024-02-23 瀏覽次數(shù) :0
中國是一個制造大國,每天必須生產(chǎn)制造很多的工業(yè)產(chǎn)品。用戶和生產(chǎn)企業(yè)對產(chǎn)品質(zhì)量的要求越來越高,不僅要滿足使用性能,還要有良好的外觀。但是,在制造產(chǎn)品的過程中,表面缺陷通常是不可避免的。
不同產(chǎn)品的表面缺陷有著不同的定義和類型,一般而言表面缺陷是產(chǎn)品表面局部物理或化學性質(zhì)不均勻的區(qū)域,如金屬表面的劃痕、斑點、孔洞,紙張表面的色差、壓痕,玻璃等非金屬表面的夾雜、破損、污點,等等。
機器視覺檢測表面缺陷
表面缺陷不僅影響產(chǎn)品的美觀和舒適度,而且一般也會對其使用性能帶來不良影響,所以生產(chǎn)企業(yè)對產(chǎn)品的表面缺陷檢測非常重視。
人工檢測是產(chǎn)品表面缺陷的傳統(tǒng)檢測方法,該方法抽檢率低、準確性不高、實時性差、勞動強度大、受人工經(jīng)驗和主觀因素的影響大,而基于機器視覺的檢測方法可以很大程度上克服上述弊端。
機器視覺是一種無接觸、無損傷的自動檢測技術(shù),是實現(xiàn)設(shè)備自動化、智能化和精密控制的有效手段,具有安全可靠、光譜響應范圍寬、可在惡劣環(huán)境下長時間工作和生產(chǎn)效率高等突出優(yōu)點。機器視覺檢測系統(tǒng)通過適當?shù)墓庠春蛨D像傳感器獲取產(chǎn)品的表面圖像,利用相應的圖像處理算法提取圖像的特征信息,然后根據(jù)特征信息進行表面缺陷的定位、識別、分級等操作。
機器視覺檢測表面缺陷
機器視覺外觀檢測系統(tǒng)基本組成主要包括圖像獲取模塊、圖像處理模塊、圖像分析模塊、數(shù)據(jù)管理及人機接口模塊。
機器視覺外觀檢測系統(tǒng)中,圖像處理和分析算法是重要的內(nèi)容,通常的流程包括圖像的預處理、目標區(qū)域的分割、特征提取和選擇及缺陷的識別分類。每個處理流程都出現(xiàn)了大量的算法,這些算法各有優(yōu)缺點和其適應范圍。如何提高算法的準確性、執(zhí)行效率、實時性和魯棒性,一直是研究者們努力的方向。
機器視覺外觀檢測比較復雜,涉及眾多學科和理論,機器視覺是對人類視覺的模擬,但是目前對人的視覺機制尚不清楚,盡管每一個正常人都是“視覺專家”,但難以用計算機表達自己的視覺過程,因此構(gòu)建機器視覺檢測系統(tǒng)還要進一步通過研究生物視覺機理來完善,使檢測進一步向自動化和智能化方向發(fā)展。